1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
use std::num::{
NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8,
NonZeroUsize,
};
use num_traits::{Bounded, One, ToPrimitive, Zero};
use serde::Serialize;
use serde_json::Number;
use vector_config_common::num::{NUMERIC_ENFORCED_LOWER_BOUND, NUMERIC_ENFORCED_UPPER_BOUND};
use crate::schema::InstanceType;
/// The class of a numeric type.
#[derive(Clone, Copy, Serialize)]
pub enum NumberClass {
/// A signed integer.
#[serde(rename = "int")]
Signed,
/// An unsigned integer.
#[serde(rename = "uint")]
Unsigned,
/// A floating-point number.
#[serde(rename = "float")]
FloatingPoint,
}
impl NumberClass {
/// Gets the equivalent instance type of this number class.
///
/// The "instance type" is the JSON Schema term for value type i.e. string, number, integer,
/// array, and so on.
pub fn as_instance_type(self) -> InstanceType {
match self {
Self::Signed | Self::Unsigned => InstanceType::Integer,
Self::FloatingPoint => InstanceType::Number,
}
}
}
/// A numeric type that can be represented correctly in a JSON Schema document.
pub trait ConfigurableNumber {
/// The integral numeric type.
///
/// We parameterize the "integral" numeric type in this way to allow generating the schema for wrapper types such as
/// `NonZeroU64`, where the overall type must be represented as `NonZeroU64` but the integral numeric type that
/// we're constraining against is `u64`.
type Numeric: Bounded + ToPrimitive + Zero + One;
/// Gets the class of this numeric type.
fn class() -> NumberClass;
/// Whether or not this numeric type disallows nonzero values.
fn is_nonzero() -> bool {
false
}
/// Whether or not a generated schema for this numeric type must explicitly disallow zero values.
///
/// In some cases, such as `NonZero*` types from `std::num`, a numeric type may not support zero values for reasons
/// of correctness and/or optimization. In some cases, we can simply adjust the normal minimum/maximum bounds in the
/// schema to encode this. In other cases, such as signed versions like `NonZeroI64`, zero is a discrete value
/// within the minimum and maximum bounds and must be excluded explicitly.
fn requires_nonzero_exclusion() -> bool {
false
}
/// Gets the JSON encoded version of the zero value for the integral numeric type.
fn get_encoded_zero_value() -> Number {
let zero_num_unsigned = Self::Numeric::zero().to_u64().map(Into::into);
let zero_num_floating = Self::Numeric::zero().to_f64().and_then(Number::from_f64);
zero_num_unsigned
.or(zero_num_floating)
.expect("No usable integer type should be unrepresentable by both `u64` and `f64`.")
}
/// Gets the minimum bound for this numeric type, limited by the representable range in JSON Schema.
fn get_enforced_min_bound() -> f64 {
let mechanical_minimum = match (Self::is_nonzero(), Self::requires_nonzero_exclusion()) {
// If the number is not a nonzero type, or it is a nonzero type, but needs an exclusion, we simply return
// its true mechanical minimum bound. For nonzero types, this is because we can only enforce the nonzero
// constraint through a negative schema bound, not through its normal minimum/maximum bounds validation.
(false, _) | (true, true) => Self::Numeric::min_value(),
// If the number is a nonzero type, but does not need an exclusion, its minimum bound is always 1.
(true, false) => Self::Numeric::one(),
};
let enforced_minimum = NUMERIC_ENFORCED_LOWER_BOUND;
let mechanical_minimum = mechanical_minimum
.to_f64()
.expect("`Configurable` does not support numbers larger than an `f64` representation");
if mechanical_minimum < enforced_minimum {
enforced_minimum
} else {
mechanical_minimum
}
}
/// Gets the maximum bound for this numeric type, limited by the representable range in JSON Schema.
fn get_enforced_max_bound() -> f64 {
let enforced_maximum = NUMERIC_ENFORCED_UPPER_BOUND;
let mechanical_maximum = Self::Numeric::max_value()
.to_f64()
.expect("`Configurable` does not support numbers larger than an `f64` representation");
if mechanical_maximum > enforced_maximum {
enforced_maximum
} else {
mechanical_maximum
}
}
}
macro_rules! impl_configurable_number {
([$class:expr] $($ty:ty),+) => {
$(
impl ConfigurableNumber for $ty {
type Numeric = $ty;
fn class() -> NumberClass {
$class
}
}
)+
};
}
macro_rules! impl_configurable_number_nonzero {
([$class:expr] $($aty:ty => $ity:ty),+) => {
$(
impl ConfigurableNumber for $aty {
type Numeric = $ity;
fn is_nonzero() -> bool {
true
}
fn class() -> NumberClass {
$class
}
}
)+
};
(with_exclusion, [$class:expr] $($aty:ty => $ity:ty),+) => {
$(
impl ConfigurableNumber for $aty {
type Numeric = $ity;
fn is_nonzero() -> bool {
true
}
fn requires_nonzero_exclusion() -> bool {
true
}
fn class() -> NumberClass {
$class
}
}
)+
};
}
impl_configurable_number!([NumberClass::Unsigned] u8, u16, u32, u64, usize);
impl_configurable_number!([NumberClass::Signed] i8, i16, i32, i64, isize);
impl_configurable_number!([NumberClass::FloatingPoint] f32, f64);
impl_configurable_number_nonzero!([NumberClass::Unsigned] NonZeroU8 => u8, NonZeroU16 => u16, NonZeroU32 => u32, NonZeroU64 => u64, NonZeroUsize => usize);
impl_configurable_number_nonzero!(with_exclusion, [NumberClass::Signed] NonZeroI8 => i8, NonZeroI16 => i16, NonZeroI32 => i32, NonZeroI64 => i64);